Fuzzy Logic Tsukamoto for SARIMA

نویسندگان

  • Isna Alfi Bustoni
  • Adhistya Erna Permanasari
  • Indriana Hidayah
  • Indra Hidayatulloh
چکیده

The wireless network is used in different fields to enhance information transfer between remote areas. In the education area, it can support knowledge transfer among academic member including lecturers, students, and staffs. In order to achieve this purpose, the wireless network is supposed to be well managed to accommodate all users. Department of Electrical Engineering and Information Technology UGM sets wireless network for its daily campus activity manually and monitor data traffic at a time then share it to the user. Thus, it makes bandwidth sharing becomes less effective. This study, build a dynamic bandwidth allocation management system which automatically determines bandwidth allocation based on the prediction of future bandwidth using by implementing Seasonal Autoregressive Integrated Moving Average (SARIMA) with the addition of outlier detection since the result more accurate. Moreover, the determination of fixed bandwidth allocation was done using Fuzzy Logic with Tsukamoto Inference Method. The results demonstrate that bandwidth allocations can be classified into 3 fuzzy classes from quantitative forecasting results. Furthermore, manual and automatic bandwidth allocation was compared. The result on manual allocation MAPE was 70,76% with average false positive value 56 MB, compared to dynamic allocation using Fuzzy Logic and SARIMA which has MAPE 38,9% and average false positive value around 13,84 MB. In conclusion, the dynamic allocation was more effective in bandwidth allocation than manual allocation. Keywords—Bandwidth allocation management; dynamic allocation; fuzzy logic; Tsukamoto inference method; SARIMA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antenna Array Side Lobe Reduction by Implementing Non – Uniform Amplitude Using Tsukamoto Fuzzy Logic Controller

This paper deals with a scheme of Antenna array side lobe reduction by varying amplitude of each element of the antenna array using the Tsukamoto fuzzy logic controller. Here it has been tried to reduce the Side Lobe Level of the antenna array radiation pattern by changing the amplitude of the antenna array elements. Spacing between the antenna array elements and the corresponding phase shift i...

متن کامل

Fuzzy Time Control Modeling Of Discrete Event Systems

Linguistic modeling of complex irregular systems is helpful for the generation of decision making controls. In the various existing Fuzzy models, proposed by Mamdani, Sugeno, and Tsukamoto, the concepts of the set of membership functions and different Fuzzy logic rules to reason about data were addressed. The time control issues were not discussed in these models. In this paper, a new model is ...

متن کامل

Implementation of Fuzzy Inference System for Production Planning Optimisation

Activities in manufacturing become uncertain and complex as there is always ambiguity in different states due to their diversity. In other words, the uncertainty can make the operations in the manufacturing companies become finite and result in unnecessary waste of resources in terms of money, labour or time. Therefore, production planning are essential activities to accurately predict producti...

متن کامل

Forecasting Seasonal Fuzzy Time Series via Periodical Analysis Approach

Fuzzy time series forecasting methods has got more and more attention in recent years since they have a good capability of forecasting real-world time series which contains uncertainty. There have been various fuzzy time series forecasting methods in the literature. On the other hand, just a few ones have been proposed to forecast seasonal time series. When a seasonal time series is forecasted,...

متن کامل

A Hybrid Method for Short-Term Wind Speed Forecasting

The accuracy of short-term wind speed prediction is very important for wind power generation. In this paper, a hybrid method combining ensemble empirical mode decomposition (EEMD), adaptive neural network based fuzzy inference system (ANFIS) and seasonal auto-regression integrated moving average (SARIMA) is presented for short-term wind speed forecasting. The original wind speed series is decom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017